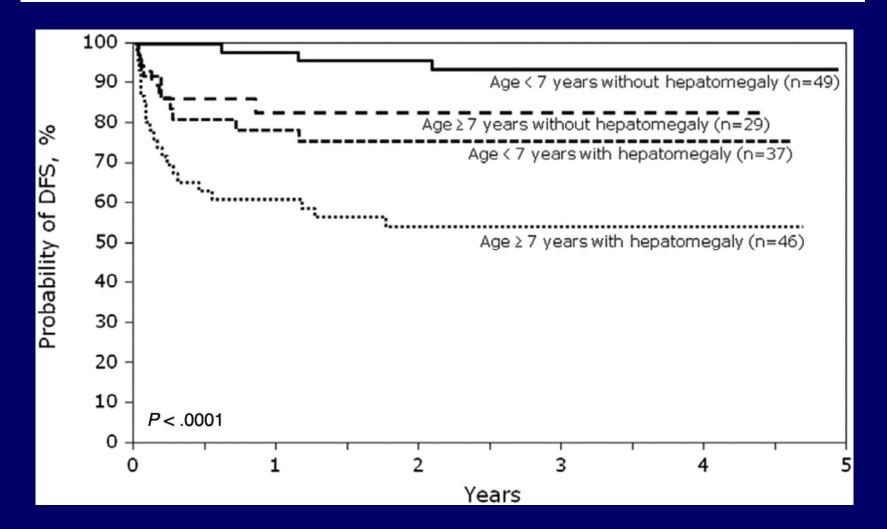

Can All Thalassemia Patients Be Cured with HSCT ?

Suradej Hongeng, MD Ramathibodi Hospital, Mahidol University

Treatments for Severe Thalassemia

Palliative treatment Blood transfusion Iron chelation Splenectomy Curative treatment Hematopoietic stem cell transplant (HSCT) Allogeneic HSC **Gene therapy Autologous HSC**

BMT in Thalassemia and Lucarelli Classification



Risk classes for BMT in thalassemia Chelation **Fibrosis** Hepatomegaly Class1 Regular NO NO Class2 **Reg/Irreg** NO/YES **NO/YES** Class3 Irregular YES YES

Lucarelli G et al. N Engl J Med 1990

HLA-matched sibling bone marrow transplantation for β-thalassemia major

Mitchell Sabloff,¹ Mammen Chandy,² Zhiwei Wang,³ Brent R. Logan,³ Ardeshir Ghavamzadeh,⁴ Chi-Kong Li,⁵ Syed Mohammad Irfan,⁶ Christopher N. Bredeson,⁷ Morton J. Cowan,⁸ Robert Peter Gale,⁹ Gregory A. Hale,¹⁰ John Horan,¹¹ Suradej Hongeng,¹² Mary Eapen,³ and Mark C. Walters¹³

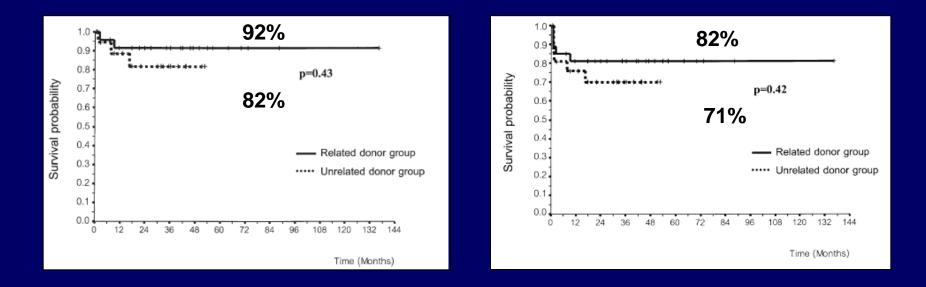
Sabloff et al. ICBMTR, Blood 2011

Results of MRD in HSCT for Thal Patients

Reference	Patients	OS	TFS
Di Bartolomeo et al.	111	90	86
Argiolu et al.	37	88	88
Clift et al.	68	94	81
Lawson et al.	54	95	82
Ghavamzadehv et al.	60	83	73
Denninson et al.	50	76	68
Lin et al.	28	86	82
Lee et al.	44	86	82
Issaragrisil et al.	21	70	53

GUIDELINE ARTICLE

Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel

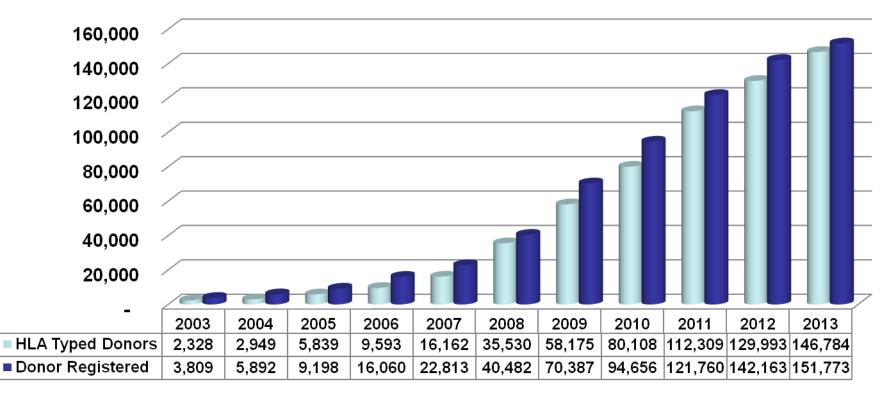

Emanuele Angelucci,¹ Susanne Matthes-Martin,² Donatella Baronciani,³ Françoise Bernaudin,⁴ Sonia Bonanomi,⁵ Maria Domenica Cappellini,⁶ Jean-Hugues Dalle,⁷ Paolo Di Bartolomeo,⁸ Cristina Díaz de Heredia,⁹ Roswitha Dickerhoff,¹⁰ Claudio Giardini,¹¹ Eliane Gluckman,¹² Ayad Achmed Hussein,¹³ Naynesh Kamani,¹⁴ Milen Minkov,² Franco Locatelli,¹⁵ Vanderson Rocha,¹⁶ Petr Sedlacek,¹⁷ Frans Smiers,¹⁸ Isabelle Thuret,¹⁹ Isaac Yaniv,²⁰ Marina Cavazzana,^{21,22,23,24} and Christina Peters;^{2,25} on behalf of the EBMT Inborn Error and EBMT Paediatric Working Parties

Haematologica 2014

Author and Reference	N. of patients	Patient cohort/ Pesaro risk category	Overall survival	Thalassemia free survival	Treatment related mortality	Comments
Galambrun <i>et al.</i> ¹²	108	Children all categories of risk	15 years 86.8%	15 years 69.4%	15 years 12%	96 sibling donor Regimen: Bu-Cy ±ATG
Yesilipek <i>et al.</i> "	245	Children: Low: 41 Intermediate: 130 High: 63	l year 85%	l year 68%	1 year 7.75%	88 BM, 137 PB, 20 CB Regimen: Bu-Cy
Li et al."	82	Children all risk categories	3 years 91%	3 years 87%	3 years 8%	52 MUD, 30 sibling Regimen Bu-Cy-Thiotepa, Fludarabine.
Choudhary <i>et al.</i> ™	28	Children: Intermediate risk: 7 High risk: 21	78.5%	71.4%	21.4%	Regimen: Treosulfan- Thiotepa-Fludarabine.
Bernardo <i>et al.</i> ™	60	Low: 27 Intermediate: 17, High: 4 Adults: 12	5 years 93%	5 years 84%	7%	20 sibling donor, 40 MUD. Regimen Treosulfan - Thiotepa - Fludarabine
Sabloff <i>et al.</i> "	179	Low: 2% Intermediate: 42% High: 36%	5 years: Intermediate risk: 91% High risk: 64%	5 years Intermediate risk: 88% High risk: 62%	Intermediate risk: 5/75 High risk 23/64	Bu-Cy + ATG in 77, Bu-Cy in 102
Ghavamzadeh <i>et al.</i> ™	183	Children Low and intermediate	2 years PBSCs 83% BM 89%	2 years PBSCs 76% BM 76%	l year PBSC 14% BM: 9%	87 PBSC , 96 BM Regimen: Bu-Cy
Iravani <i>et al.</i> ¹⁹	52	Children high risk: 52	4.1 years 80%	4.1 years 65%	4.1 years 7/52	32 BM, 20 PBSC Regimen: Bu-Cy
Irfan <i>et al.</i> ®	56	Children Low: 20 Intermediate : 20 High: 16	5 years BM: 73% PBSCs: 65%	5 years BM: 67% PBSCs: 55%	100 days: 10/56	29 BM, 27 PBSCs Lower risks: Bu-Cy High risk: Hydroxyurea- Azathioprine-Fludarabune- Bu-Cy
Locatelli <i>et al.</i> "	259	Median age 8 years (range 1-: Low: 86 Intermediate: 122 High: 51	24) 6 years 95%	6 years 86%	4%	Multicentric retrospective registry study. Regimens: Bu-Cy, Bu-Cy_Fludarabine, Bu-Cy- Thiotepa ±ATG.
Ullah <i>et al.</i> ²²	48	Low: 31 Intermediate: 11 High: 6	6 years 79%	6 years 75%	20.8%	Regimen: Bu-Cy
Di Bartolomeo <i>et al.</i> "	115	All categories	20 years 89.2%	20 years 85.7%	l year 8.7%	20 years Pescara experience. Regimen: Bu-Cy
Gaziev et al. ²⁴	107	High risk	12 years 66%	12 years 62%	37%	Regimen: Bu-Cy or Hydroxyurea-Azathioprine- Fludarabine-Bu-Cy
Lawson <i>et al.</i> ²⁵	55	Low: 17 Intermediate: 27 High: 11	8 years 94.5%	8 years 81.8%	5,4%	Regimen: Bu-Cy±Campath or Fludarabine
Gaziev <i>et al.</i> 26	68	6 low risk 23 intermediate risk 39 high risk	3 years 91%	3 years 87%	100 days 3%	Intravenous Busulfan based regimen
Chiesa <i>et al.</i> ²⁷	53	high risk children	2 years 96%	2 years 88%	2 years 4%	Intravenous Busulfan dose-adjustment policy.
Hussein et al.28	44	Low risk: 7 Intermediate risk: 24 High risk: 13	5 years 97.8%	5 years 86.4%		High risk patients received reduced intensity conditioning and had higher llassemia recurrence rate (239
Mathews et al.29	50	High risk	3 years 86.6%	3 years 77.8%	13% 1	freosulfan based conditioning

OS: overall survival; TFS: thalassemia free survival; TRM: transplant related survival; NR: not reported; Bu: busullan; Cy: cyclophosphamide; ATG: antithymocyte globulin; BM: bone marrow; PBSC: peripheral blood stem cells; CB: cord blood.

HSCT in Thalassemia at Ramathibodi Related n=28, Unrelated n=21 Total 49 patients

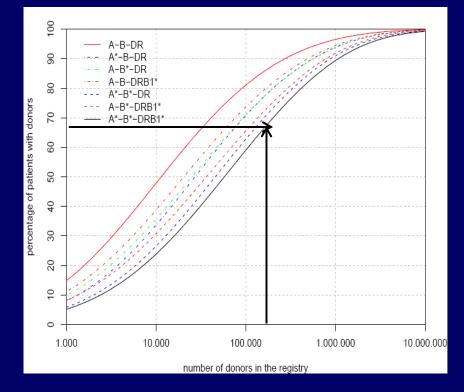

Overall survival (OS) and thalassemia free survival (TFS) in Thai children

Hongeng S et al. Biol Blood Marrow Transplant 2006

Dilemma of HSCT in Thal

Donor availability Older patients

Stem Cell Donor in Registry (November 2013)



HLA Typed Donors Donor Registered

Propability in Finding HLA-A,-B,-DR Matched Donor

Number of Donors in Registry

New Stratification for High Risk Class 3 Patients

Definition Older patients Age ≥ 10 yrs Hepatomegaly (liver > 3 cm below right costal margin)

High Risk Class 3 Patients (Age ≥ 10 yrs) Pretransplant Management Program

Hypertransfusion in order to decrease erythroid expansion especially to decrease spleen size
Regular iron chelation for at least 6-12 months
Hydroxyurea (Hb F enhancer) in order to decrease erythroid expansion: 20 mg/kg/day for at least
6-12 months

> Sodani P et al. Blood 2004 Hongeng S et al. Am J Hematol 2007

Previous RTC Regimen (Early 8 Patients)

Busulfan oral (8-12 mg/kg) Fludarabine (210 mg/m²) ATG (Fresinius 20 mg/kg) ±TLI 500 cGy ± Thiotepa 10 mg/kg ± Melphalan 100 mg/m²

GVHD prophylaxis CSA or FK506 and MMF

Reduced intensity stem cell transplantation for treatment of Class 3 Lucarelli severe thalassemia patients

Suradej Hongeng,¹* Samart Pakakasama,¹ Ampaiwan Chuansumrit,¹ Nongnuch Sirachainan,¹ Thanyachai Sura,² Artit Ungkanont,² Suporn Chuncharunee,² Saengsuree Jootar,² and Surapol Issaragisil³

Am J Hematol, 2007

TABLE III. Characteristics of Previously Published Studies

References	Number of patients	Conditioning regimen	Stem cell source	Number of patients with stable engraftment	Number of deaths
2	7	Flu, TBI, ± ALG	BM	None	None
3	4	Flu, ALG, TBI	BM	1	None
4	4	Bu, Flu, ALG	PBSC	2	2
5	5	Bu, Flu, ALG, TLI	PBSC	5	None
Current Series	8	Bu, Flu, ALG, ± Thio, ± TLI	PBSC	6	None

Flu, fludarabine; TBI, total body irradiation; ALG, antilymphocyte globulin; TLI, total lymphoid irradiation; Thio, thiotepa; BM, bone marrow; PBSC, peripheral blood stem cell.

2 Iannone R, et al. BBMT 2003 3 Horan JT, et al. BMT 2005 4 Jacobsohn DA, et al. Lancet 2004 5 Krishnamurti L, et al. BMT 2006

Outcomes of Thalassemia Patients Undergoing Hematopoietic Stem Cell Transplant by Using a Standard Myeloablative (MAC) Versus a Novel Reduced Toxicity (RTC) Conditioning Regimen According to a New Risk Stratification

> Suradej Hongeng, MD Dept of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University Bangkok, Thailand

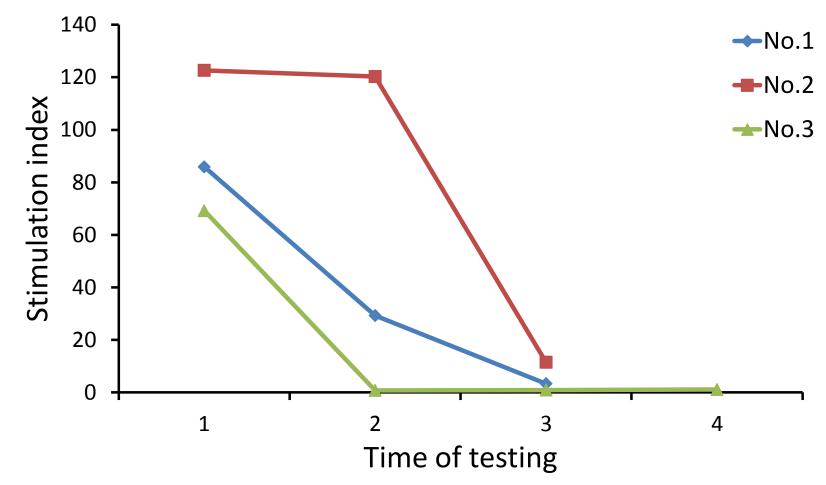
Novel Approach for High Risk Class 3 Patients

Pre transplant management

Hypertransfusion, chelation and hydroxyurea

Pretransplant immunosuppression (PTIS) Flu + Dex (2 cycles)

Conditioning regimen Bu + Flu + ATG


Pre-transplant Immunosuppression (PTIS)

Fludarabine 40 mg/m² x 5 days Dexamethasone 25 mg/m² x 5 days 1-2 cycles; 28-day cycle

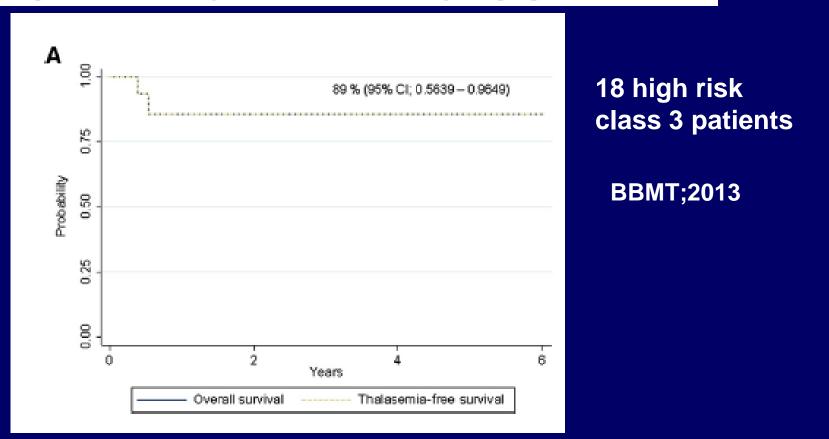
PTIS is given prior to conditioning regimen

Decreased CD4 cell proliferation

CD4 T cells proliferation

Conditioning Regimen for High Risk Class 3 Patients

Past


Combination of cyclophosphamide & busulfan Too much alkylating agent regimen Too toxic

Novel RTC Regimen and GVHD Prophylaxis

- Fludarabine 35 mg/m²; d-9,-8,-7,-6,-5,-4 Busulfex 130 mg/m²; d-9,-8,-7,-6 ATG (Thymoglobulin) 1.5 mg/kg; d-3,-2,-1
- CSA or FK506 and MMF (60 days)

Pretransplant Immunosuppression followed by Reduced-Toxicity Conditioning and Stem Cell Transplantation in High-Risk Thalassemia: A Safe Approach to Disease Control

Usanarat Anurathapan¹, Samart Pakakasama¹, Piya Rujkijyanont², Nongnuch Sirachainan¹, Duantida Songdej¹, Ampaiwan Chuansumrit¹, Somtawin Sirireung³, Pimlak Charoenkwan⁴, Arunee Jetsrisuparb⁵, Surapol Issaragrisil⁶, Artit Ungkanont⁷, Rosarin Sruamsiri⁸, Supanart Srisala⁹, Borje S. Andersson¹⁰, Suradej Hongeng^{1,*}

MAC vs Novel RTC

MAC Regimens and GVHD Prophylaxis

Related donor and age < 10 yrs MAC regimen: Cyclo 200 mg/kg, Bu 14-16 mg/kg PO/IV CSA + MTX

Unrelated group and < 10 yrs MAC regimen: Cyclo 200 mg/kg, Bu 14-16 mg/kg PO/IV, Flu 210 mg/m2 and ATG (Fresenius) 40 mg/kg FK506 + MTX

HLA Matching

Related: 6 allele matching Unrelated: (before 2006) 6 allele matching (current) 8 allele matching

Study Population

120 thalassemia patients undergoing HSCT; 1989 – mid 2014 (Current number 135 pts) Exclude cord blood transplant n = 7 Exclude previous RTC transplant n = 8 (Am J Hematol; 2007) Exclude haploidentical transplant n = 7 Final number of patients n = 98 patients

Related n = 65; Unrelated n = 33

MAC n = 76; **Novel RTC** n = 22

Patient Characteristics

MAC

Related n= 50, Unrelated n=26 (34%) Mismatched HLA (1 Ag or 1 Allele) 12/76 (15%)

Novel RTC Related n=15, Unrelated n=7 (32%) Mismatched HLA (1 Ag or 1 Allele) 5/22 (22%)

All received BM or PBSC.

Novel RTC Group

- 22 patients
- 2 out of 22 had second HSCT and 1 had third HSCT
- Age; median = 16 (10-21) y/o
- Male 8; Female 14
- Splenectomy = 7 (Referral hospital)
- All patients had liver > 5 cm below costal margin.
- Ferritin level; median = 3100 (869-8350) ng/mL

Comorbidities

- 2 DM, 1 previous extramedullary hemopoiesis,
- 1 previous history of PHT

Novel RTC Group

- 21 patients received PBSC.
- 1 patient received BM.

Median CD34+ 9.4 (4.67-19.26) x10⁶ cells/kg

MRD 13 MMRD 2 (DRB1) MUD 4 MMUD 2 (C) MMUD 1 (A)

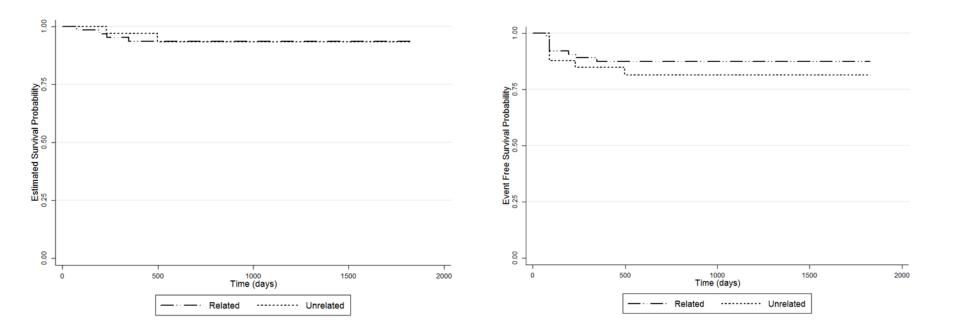
MAC vs RTC

Biology of Blood and Marrow Transplantation

journal homepage: www.bbmt.org

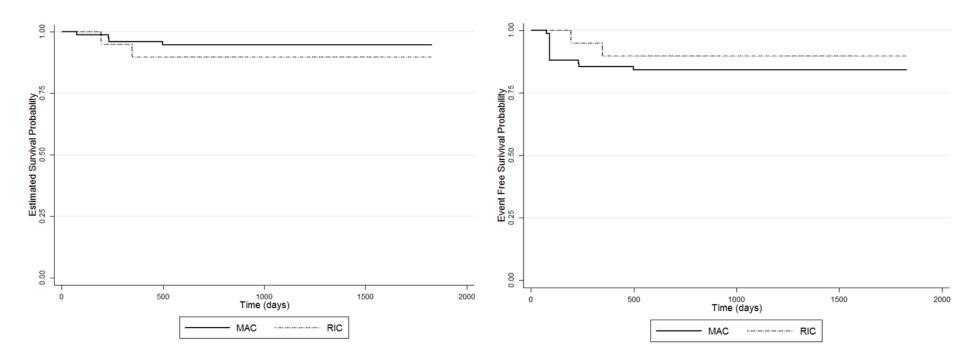
Outcomes of Thalassemia Patients Undergoing Hematopoietic Stem Cell Transplantation by Using a Standard Myeloablative versus a Novel Reduced-Toxicity Conditioning Regimen According to a New Risk Stratification

Usanarat Anurathapan¹, Samart Pakakasama¹, Pimsiri Mekjaruskul¹, Nongnuch Sirachainan¹, Duantida Songdej¹, Ampaiwan Chuansumrit¹, Pimlak Charoenkwan², Arunee Jetsrisuparb³, Kleebsabai Sanpakit⁴, Bunchoo Pongtanakul⁴, Piya Rujkijyanont⁵, Arunotai Meekaewkunchorn⁶, Rosarin Sruamsiri⁷, Artit Ungkanont⁸, Surapol Issaragrisil⁹, Borje S. Andersson¹⁰, Suradej Hongeng^{1,*}


Outcome of All 98 Patients

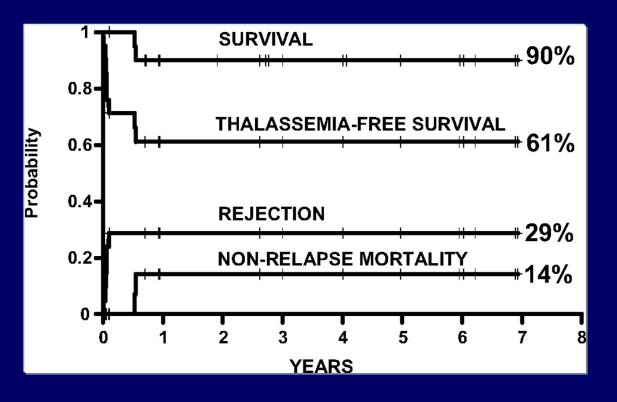
Overall survival = 94% (95%CI; 86.3%-97/1%) Event free survival = 87% (95%CI; 76.6%-91.1%)

Survival Rates Related (n=65) and Unrelated (n=33) HSCT in Thalassemias


OS Related vs Unrelated = 94%

EFS Related = 88% EFS Unrelated = 82%

MAC (n = 76) vs Novel RTC (n = 22)


OS MAC = 95% RTC = 90% EFS MAC = 88% RTC = 93%

MAC vs Novel RTC

Acute GVHD gr III-IV	MAC 3 (4%)	RTC 2 (10%)
Chronic GVHD		
Limited	6 (8%)	3 (13%)
Extensive	2 (3%)	0
Dead	3 1 Graft failure 1 Viral infection 1 Secondary AML	2 1 Fungal infection 1 Accident

Haploidentical HSCT (34+ selection)

22 pts Myeloablative regimen; Cyclo, Bu, Flu,Thiotepa and ATG

GVHD prophylaxis CSA

Sodani et al, Blood 2010

Cyclophosphamide post HSC Infusion

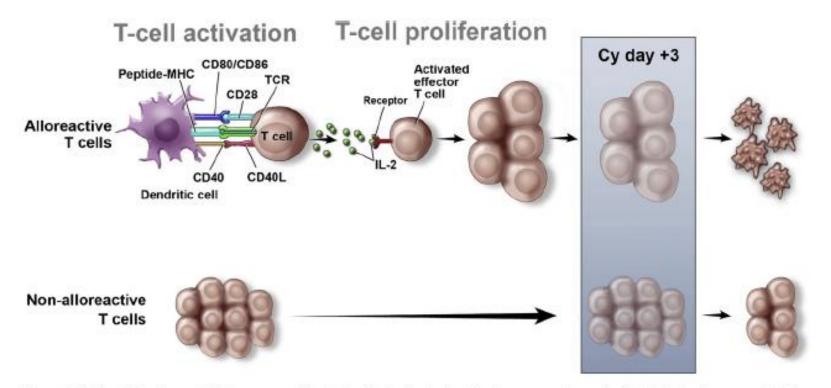


Figure 1. Activated T cells are relatively more sensitive to the effects of cyclophosphamide compared to resting T cells. Following nonmyeloablative conditioning, both donor and host T cells are exposed to alloantigens, resulting in activation and proliferation of T cells capable of host-versus-graft and graft-versus-host reactions. Expansion of the alloreactive clones occurs in the first 3 days after transplant, at which point cyclophosphamide is given to deplete activated T cells. Hematopoietic stem cells and resting T cells are relatively resistant to cyclophosphamide, which preserves T cells that recognize viral antigens and enhances immune reconstitution.

TFS in related or unrelated for all age group (including pts age older than 10 yrs) in our center is 90%.

Haploindentical HSCT in 17 severe thalassemia patients (11/17 pts age > 10 yr)

Reduced toxicity conditioning plus cyclophosphamide post transplant

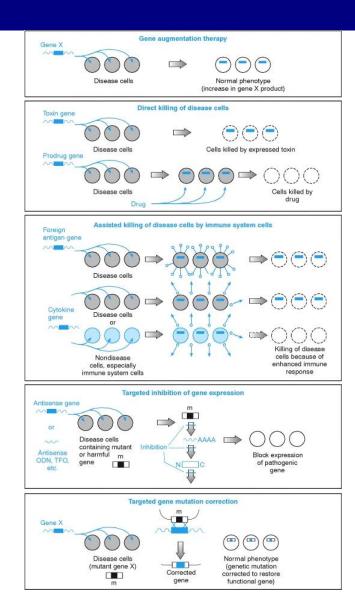
Sixteen of 17 pts survived without thalassemia.

1 pt had GvHD gr IV. 2 had graft failure.

Event free survival rate 95%

Follow up time; 4-20 months

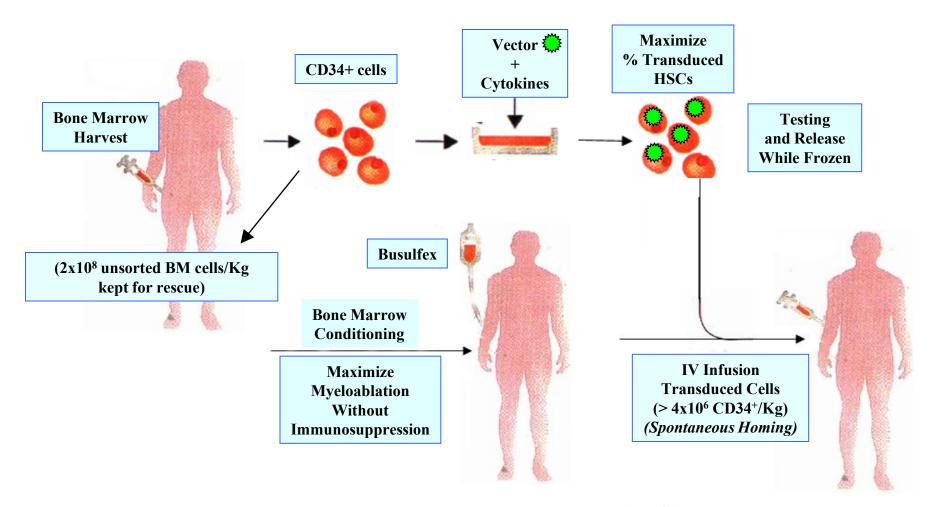
MRD vs MUD vs Haplo-HSCT


Event free survival rates

MRD (n = 65) = 88% MUD (n = 33) = 82% Haplo (n = 17) = 95%

p = 0.49

Methods of Gene Therapy



Transfusion independence and HMGA2 activation after gene therapy of human β -thalassaemia

Marina Cavazzana-Calvo^{1,2}*, Emmanuel Payen^{3,4,5}*, Olivier Negre^{3,4,5,6}, Gary Wang⁷, Kathleen Hehir⁸, Floriane Fusil^{3,4,5}, Julian Down⁸, Maria Denaro⁸, Troy Brady⁷, Karen Westerman^{8,9}, Resy Cavallesco⁹, Beatrix Gillet-Legrand⁶, Laure Caccavelli^{1,2}, Riccardo Sgarra¹⁰, Leila Maouche-Chrétien^{3,4}, Françoise Bernaudin¹¹, Robert Girot¹², Ronald Dorazio⁸, Geert-Jan Mulder⁸, Axel Polack⁸, Arthur Bank¹³, Jean Soulier⁵, Jérôme Larghero⁵, Nabil Kabbara⁵, Bruno Dalle⁵, Bernard Gourmel⁵, Gérard Socie⁵, Stany Chrétien^{3,4,9}, Nathalie Cartier¹⁴, Patrick Aubourg¹⁴, Alain Fischer^{1,2}, Kenneth Cornetta¹⁵, Frédéric Galacteros¹⁶, Yves Beuzard^{3,4,5}, Eliane Gluckman⁵, Frederick Bushman⁷, Salima Hacein-Bey-Abina^{1,2}* & Philippe Leboulch^{3,4,9}*

NATURE Vol 467 16 September 2010

Overview of the clinical protocol

Initial results from the Northstar Study (HGB-204): A Phase 1/2 Study of Gene Therapy for β-Thalassemia Major via Transplantation of Autologous Hematopoietic Stem Cells Transduced *Ex-Vivo* with a Lentiviral β^{A-T87Q}-Globin Vector

Alexis A. Thompson, John E. J. Rasko, Suradej Hongeng, Janet
 L. Kwiatkowski, Gary Schiller, Christof von Kalle, Marina
 Cavazzana, Philippe Leboulch, Alexandria Petrusich, Sandeep
 Soni, Mark C. Walters

Subject and Cellular Product Characteristics

Subject Number	Age	Sex	Genotype	Birth Country	Splenectomy	Transfusion Requirement ^a	VCN in Cellular Product ^b	CD34⁺ Cell Dose (x 10 ⁶ /kg)
1102	18	F	β ⁰ /β ^ε	USA	Yes	137	1.0/1.1	6.5
1104	21	F	β ⁰ /β ^ε	Thailand	No	153	0.7/0.7	5.4
1106	20	F	β ⁰ /β ⁰	Pakistan	No	197	1.5	13.5
1107	26	F	β ⁰ /β ⁰	Australia	No	223	1.0	15.0
1108	18	F	β ⁰ /β ⁺	USA	Yes	144	0.9	7.9
1109	29	Μ	β ⁰ /Α ^c	USA	Yes	158	0.6/0.6	10.1
1110	33	F	β ⁰ /β ⁰	USA	Yes	172	0.7	6.3

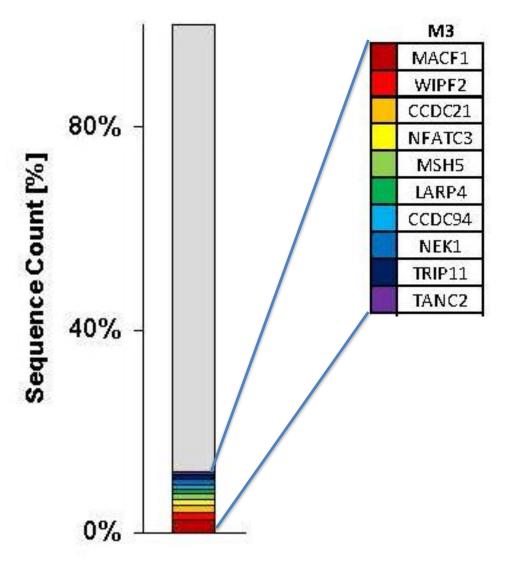
^a mean pRBC requirement in cc/kg/year, over the 2 years prior to consent

^b VCN= mean number of vector copies per CD34+ cell

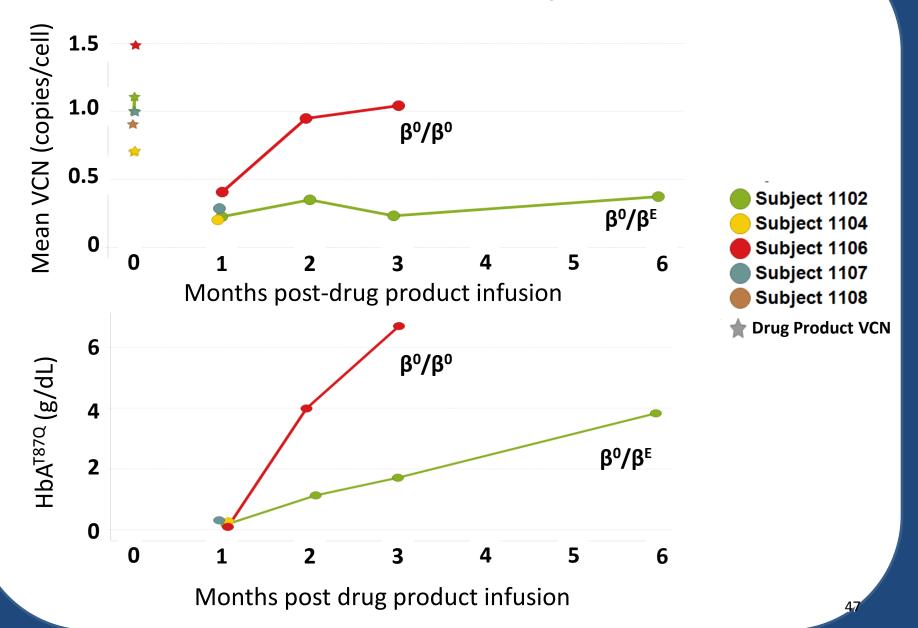
^c Subject 1109 has alpha gene triplication, resulting in an autosomal dominant beta thalassemia phenotype.

Clinical Safety for Infused Subjects

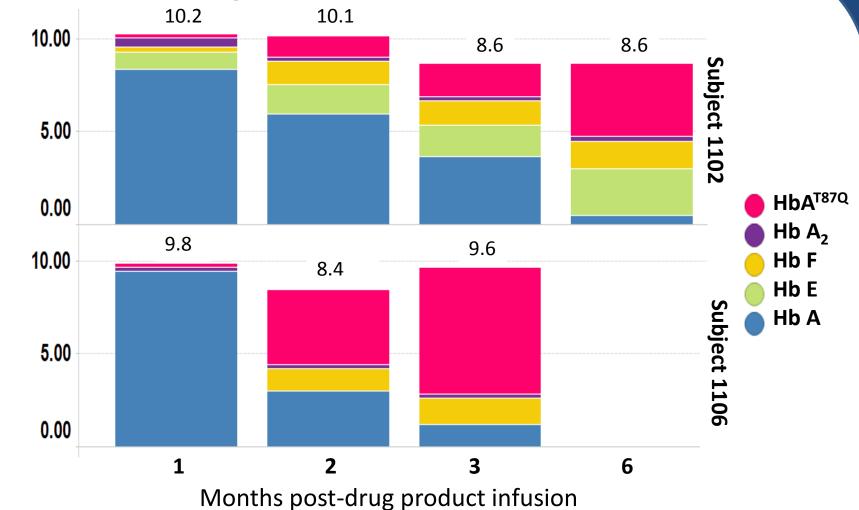
	Subject 1102	Subject 1106	Subject 1104	Subject 1107
Follow up period	6 months	3 months	2 months	1 month
Neutrophil engraftment ANC > 500/µL	Day +17	Day +29	Day +18	Day +14
Platelet engraftment Unsupported platelet count > 20,000/µL	Day +28	Day +30	Day +31	Day +27
Non-laboratory ≥Grade 3 AEs	 Mucositis Bacteremia Febrile neutropenia 	 Mucositis Epistaxis Febrile neutropenia 	Mucositis	MucositisInfectionHeadache
SAEs post-infusion	None	None	Catheter Thrombosis	None


As of 21 November 2014

Subject 1108 was infused 06Nov2014 and no data is available


- All AEs consistent with myeloablative conditioning
- No ≥Grade 3 AEs related to drug product, no RCL at 3 and 6 months

Integration Site Analysis: Subject 1102 at Month 3


- 2393 unique genemarked clones identified
- No clonal dominance observed
- Top 10 clones combined represent 12.4% of all clones detected
- Early polyclonal repopulation

VCN and HbA^{T87Q} in Peripheral Blood

Hemoglobin Fractions in Whole Blood

Hb (g/dL)

- Subject 1102 (β^0/β^E) producing **3.8** g/dL HbA^{T87Q} at 6 Months
- Subject 1106 (β^0/β^0) producing **6.8** g/dL HbA^{T87Q} at 3 Months

Conclusion

Outcomes of HSCT for thal in both MRD and MUD are favorable.

Outcomes of HSCT for all age group among thal pts are also favorable.

Whether the novel RTC regimen should be studied in younger thalassemia patients is needed to be investigated.

Autologous HSC with gene addition may give a new hope for cure for thal patients.

Acknowledgement

Samart Pakakasama Ampaiwan Chuansumrit Nongnuch Sirachainan Usanarat Anurathapan Duantida Songdej

HLA lab and BMT nurses

Somtawain Sirirueng Wanpen Pantangkool Saengsuree Jootar Artit Ungkanont

Vinai Suvattee Suthat Fucharoen Surapol Issaragrisil

Borje Andersson Pramongkutklao Hospital Srinakarind Hospital Suandok Hospital Songklanakarin Hospital Siriraj Hospital

Acknowledgement

Ramathibodi Foundation

Children Cancer Fund under The Patronage of HRH Princess Som Sawali