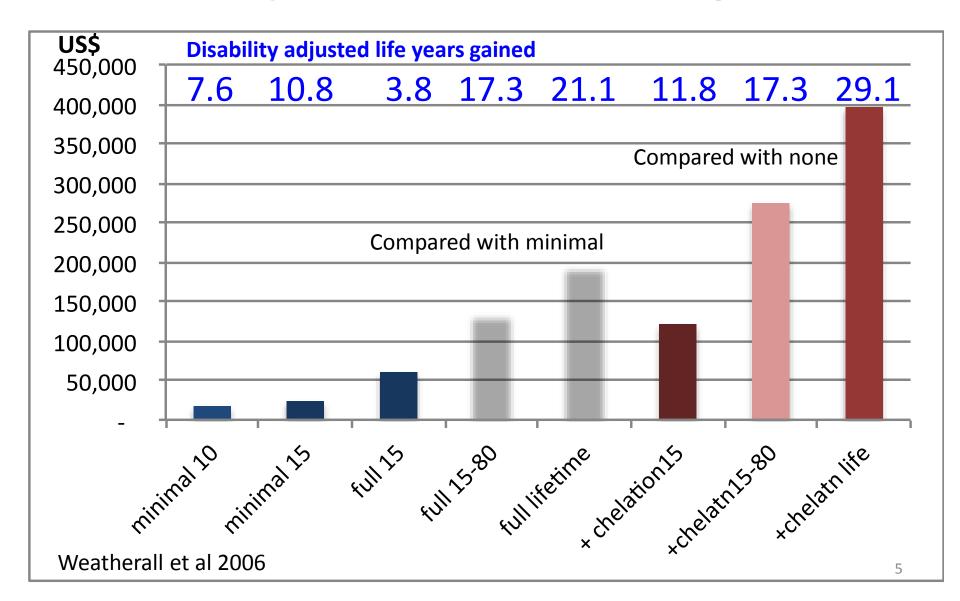

Burden in Thalassaemia: Economic Aspect

Supasit Pannarunothai
Faculty of Medicine
Naresuan University

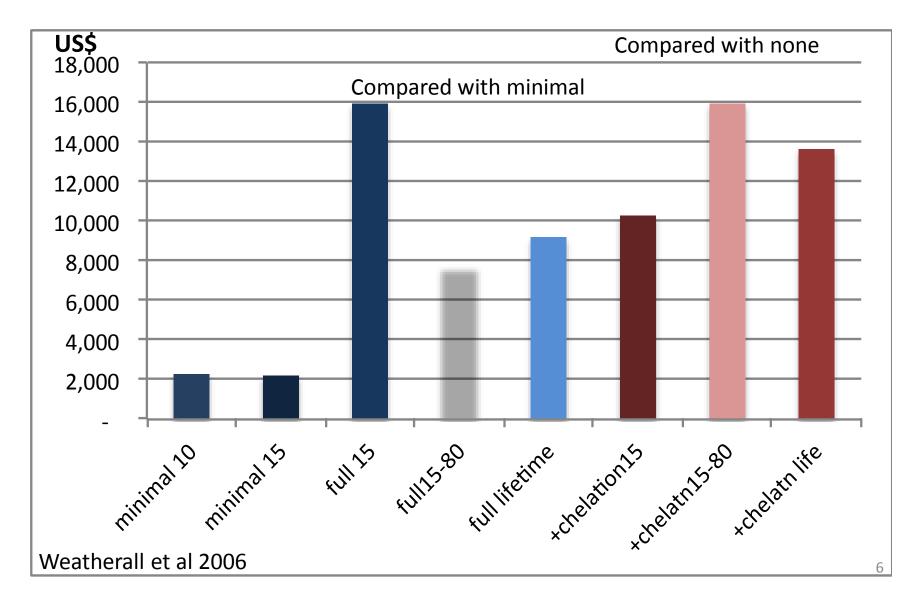
Births with a Pathological Haemoglobin Disorders per 1,000 live births Global Distribution of Pathological Haemoglobin Disorders 1996 (WHO)

Source: March of Dimes/Global report on Birth Defects-The hidden toll of dying and disabled children

Control programme/activities


Policy/service	Malaysia	Indonesia	Singapore	Thailand
National policy	Yes	Yes	Yes	Yes
Patient registry	Hospital based	Yes	Yes	Hospital based
Chelating agents registered	AII	AII	All	AII
Chelation free	Yes	Yes	Yes	Partial support
Specialist monitoring (e.g. cardiac MRI)	Yes	In major centres	Yes	Yes
National Screening program	yes	no	Yes	Yes

TIF2013


Epidemiology in ASEAN (TIF 2013)

Country	a- thal carriers	ß-thal carriers	HbE carriers	Annual expected births	Known patients treated
Brunei Darussalam	?	2%	?	1	179
Cambodia	35%	3%	35%	1762	?
Laos	42%	6%	18%	1106	?
Malaysia	23%	4.5%	3.4%	727	1500
Myanmar	30%	2.2%	22%	2398	4079
Indonesia	0.5% - 11%	5%	6% (1-33%)	9368	5431
Philippines	7%	1.2%	0.4%	153	600
Singapore	4%	3%	0.64%	13	154
Thailand	30%	5%	30%	6983	400000
Vietnam	5%	2%	1%	830	1000
Total	~20%	~3.5%	1-30%	~23000	~413000

Cost \$/person and DALYs gained

Cost (\$) per DALY gained

Cost of illness approach in Thailand

- Transfusion dependent cases (Severe cases 47%)
- OP visits 9.2/person/yr (Severe 10.4, non 8.3)
- IP 10.9% per yr (Severe 17.0, non-severe 5.7%)
- Bl Tx 7.4 times/yr (Severe 9.4, non-severe 5.7)
- Chelation 44% (Severe 59%, non-severe 32%)
- Total cost \$950 (95%CI 806-1,293)/person/year
 - Severe cases \$1,023, non-severe \$889
 - Direct med cost 59%; Direct non-med 17%, Indirect cost 24%

Riewpaiboon et al 2012

Cost Utility Analysis in Thailand

- Haematopoietic stem cell transplantation (HSCT)
 vs. blood transfusion with iron chelating therapy
 (BT-ICT): the incremental cost-effectiveness ratio
 (ICER)
 - B80,700 183,000/QALY gained for related HSCT
 - B209,000 953,000/QALY gained for unrelated HSCT among patients aged 1 to 15 years
- Providing 200 related HSCT to patients aged 1 to 10 years, approx B90 million/year in addition.

Leelahavarong et al 2010

Claim data at NHSO in 2014

- 53,189 antenatal investigations from 31,492 pregnancies; except NHSO Bangkok branch
- 8% missed father investigations
- Tests claimed (mother vs. father):
 - Hb typing 71% vs. 67%
 - PCR 22% vs. 21%
 - Mutation analysis 2% vs. 2%
 - Cordocentesis, amniocentesis, CVS 2%

Test results and prenatal diagnosis

Father

Mother	F normal	F abnormal
M normal	26%	14%
M abnormal	15%	44%

From 45,766 paired tests

Cordocentesis, amniocentesis, CVS only 2%

Claim data at NHSO in 2014 by region

Region	Ν	Hb typing	PCR	Mutation	PND	Missed F
1	6,307	51%	32%	2%	604	15%
2	4,231	61%	28%	1%	78	5%
3	4,240	60%	31%	1%	93	5%
4	2,006	74%	9%	0%	23	15%
5	2,351	78%	15%	0%	11	6%
6	1,604	80%	13%	0%	9	5%
7	4,658	74%	13%	0%	33	5%
8	6,653	76%	18%	3%	-	2%
9	6,125	61%	15%	0%	12	13%
10	10,074	73%	20%	0%	1	4%
11	2,154	52%	10%	1%	43	35%
12	2,786	39%	6%	0%	19	45%
Sum	53,189	65%	20%	1%	926	10%

Inpatient cases in 2009

From 5.9 admissions:

0.8% Thalassaemia as principal diagnosis (PDx)

0.3% by inpatient hospital resource use (RW)

0.2% by lengths of stay

		CSBMS	UC	UC Uhosnet
Pre				
MDC	Cases of BMT	5	0	0
15	Childhood cases	0	19	2
16	Haematological	96.2%	94.2%	93.1%
26	Ungroupable	0.6%	0.2%	0%
28	Short stay<6 hrs	3.0%	5.5%	6.8%
	Total cases	2,696	41,535	1,94012

Casemix Index of Thalassaemia cases

	All cases	*RW
MDC	RW	Thal/All
15 Childhood diseases	0.5493	1.4
16 Haematological	0.6372	0.6
26 Ungroupable	0.8563	0.7
28 Short stay	0.3074	0.5

^{*} Average CMI of UC cases to all cases

Conclusions

- Opportunity to improve data quality for assessing economic burden
- Burden that could be averted from screening was still under targeted
- Newborns with thalassaemia were still low with higher severity
- Cost-effective treatments available but low utilised
- Inequity of economic burden to the worst off
- Redesign service plan and financing mechanisms.

Acknowledgements

- National Health Security Office
- Central Office for Healthcare Information
- Thalassemia Foundation of Thailand